GrowFlux Blog

Lighting


The Far-Red Growers Guide

Posted by Eric Eisele on

What is Far Red light?

Far-red light (> 700 nm wavelength) is at the very edge of the photosynthetically active radiation (PAR) and visible spectrum, and falls outside the PAR range of 400-700nm.

Different wavelengths of light have different photosynthetic efficiency, peaking in the red and blue regions. Although photosynthetic efficiency falls sharply for wavelengths longer than 685 nm, far-red light enhances the photosynthetic efficiency of shorter wavelength light.

Delivering far-red light to the crop at certain times allows growers to manipulate plant responses, flower faster, and boost yield. GrowFlux’s platform is built to help growers leverage far-red and intelligent lighting control.

HOW FAR-RED LIGHT DRIVES PROFITABILITY

  1. GROW CROPS FASTER
    Far-red light, delivered only at specific times of the day, acts on photoreceptors in short day flowering plants, accelerating flowering and ultimately reducing time to harvest. GrowFlux’s customers are often growing strawberries 15% faster using our tunable far-red Light Formulas

  2. BOOST PHOTOSYNTHETIC EFFICIENCY
    A small absolute quantity of far-red light delivered during the day can boost the crop’s ability to metabolize with PAR spectrum light in the 400-700nm range. We typically see about a 10-15% increase in yield between light formulas with and without far-red light.

  3. MANIPULATE CROP RESPONSES
    Fine tuning the ratio of red to far-red light allows growers to induce shade avoidance responses in the crop, which can be used to boost leaf area and radiation capture in the earliest stages of growth. GrowFlux offers light formulas and tunable controls to fully leverage this effect.

LEARN MORE ABOUT FAR-RED IN THE FAR-RED GROWERS GUIDE

Read more →

Lighting controls: Three things to consider when selecting a horticultural lighting solution

Posted by GrowFlux on

GrowFlux Wireless Access Point

GrowFlux Wireless Access Point

When planning a large scale Controlled Environment Agriculture (CEA) facility such as a hybrid lit greenhouse or indoor cultivation space, network resilience, network set up time, and installation cost are important factors to consider in selecting a horticultural lighting solution. Some lighting solutions on the market require zone controllers and data cables, which adds labor and cost to the installation process. Most wireless lighting control solutions require a multi step network setup process for each fixture, which adds up to a significant amount of time for facilities requiring hundreds or thousands of fixtures. 

For wireless control solutions, network resilience is an important factor to consider for large scale facilities. Unreliable lighting network connectivity can grind a large facility to a halt, sucking up time and resources to troubleshoot network issues all while the lighting solution is not performing as designed.

AetherMesh wireless module used in GrowFlux lighting and sensing products

AetherMesh wireless module used in GrowFlux lighting and sensing products

Only GrowFlux offers AetherMesh wireless controls on all of its products. AetherMesh was designed specifically for large scale CEA facilities and solves the issues discussed above:

Network resilience:

  • AetherMesh communicates on Sub 1-GHz frequencies and utilizes a high efficiency, high gain antenna, ensuring that wireless signals easily penetrate through dense buildings, multiple walls, concrete, and warehouses containing dense arrays of shelving.

  • Line of sight range of 1+ mile (1.6+ km) is possible between AetherMesh devices; indoor range through walls is typically upwards of 500ft (150+ m).

  • AetherMesh wireless mesh links self heal. If a device has trouble routing a message through one route, the mesh automatically finds another path through which to route messages. All network nodes maintain multiple network paths through which to route messages, choosing the most power and traffic efficient route in real time.

  • AetherMesh splits the 902-928 MHz band into 50 channels; the network automatically channel hops communication across these channels to avoid interference.

  • When we communicate lighting settings to a zone of fixtures, we send up to 90 days of scheduled control. This ensures that fixtures know exactly what they should be doing in the event of communication failure. Fixtures immediately get back to the correct scheduled control after any power failures.

Network setup time:

  • GrowFlux products incorporating AetherMesh wireless control set up rapidly out of the box - simply power on the device for the first time within 10 feet of your Access Point, and the device will securely join and remember the network within 30 seconds. AetherMesh network setup does not involve passwords, codes, IP address, or any other complicated network setup steps.

  • Connecting hundreds or thousands of fixtures happens as fast as the units are unpacked. Unpacking and initial power on occurs near an Access Point prior to hanging the fixture in the grow space.

  • Zone definition is entirely software based with our browser based interface - zones are not defined through network settings.

Installation cost:

  • One Access Point can support networks upwards of 1000 devices, significantly reducing cost

  • Zone definition is entirely software based, so hardware zone controllers are eliminated.

  • Every fixture on the network operates as a full power wireless mesh node (battery powered sensors perform limited extension of the mesh network to conserve battery life). This means repeaters and additional gateways are not required for large networks.

  • Since GrowFlux products are fully wireless, the installation labor and cost associated with data cables and controllers is eliminated.

Read more →

Coefficient of Utilization (CU) explained

Posted by GrowFlux on

Coefficient of Utilization (CU) is a measure of how much light exiting the fixture will fall on a canopy area of a certain size; CU is an important factor to consider in designing an energy efficient Controlled Environment Agriculture (CEA) facility. CU is expressed as a ratio of the total light emitted by the fixture to the light that falls on an area of canopy of a defined size. It is important to note that the light that does not fall on the canopy directly under the fixture may either be wasted (to walls or floor), or may fall on canopy area adjacent to the fixture, depending on the design of the facility.

Read more →